Algorithms (Apr 2015)

A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables

  • Jaw-Kuen Shiau,
  • Yu-Chen Wei,
  • Bo-Chih Chen

DOI
https://doi.org/10.3390/a8020100
Journal volume & issue
Vol. 8, no. 2
pp. 100 – 127

Abstract

Read online

Maximum power point tracking (MPPT) is one of the key functions of the solar power management system in solar energy deployment. This paper investigates the design of fuzzy-logic-based solar power MPPT algorithms using different fuzzy input variables. Six fuzzy MPPT algorithms, based on different input variables, were considered in this study, namely (i) slope (of solar power-versus-solar voltage) and changes of the slope; (ii) slope and variation of the power; (iii) variation of power and variation of voltage; (iv) variation of power and variation of current; (v) sum of conductance and increment of the conductance; and (vi) sum of angles of arctangent of the conductance and arctangent of increment of the conductance. Algorithms (i)–(iv) have two input variables each while algorithms (v) and (vi) use a single input variable. The fuzzy logic MPPT function is deployed using a buck-boost power converter. This paper presents the details of the determinations, considerations of the fuzzy rules, as well as advantages and disadvantages of each MPPT algorithm based upon photovoltaic (PV) cell properties. The range of the input variable of Algorithm (vi) is finite and the maximum power point condition is well defined in steady condition and, therefore, it can be used for multipurpose controller design. Computer simulations are conducted to verify the design.

Keywords