International Journal of Nanomedicine (May 2014)
Nanosilver particles in medical applications: synthesis, performance, and toxicity
Abstract
Liangpeng Ge,1–5,* Qingtao Li,2,3,6,* Meng Wang,2,3 Jun Ouyang,6 Xiaojian Li,7 Malcolm MQ Xing2,31Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China; 2Department of Mechanical and Manufacturing Engineering, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada; 3Manitoba Institute of Child Health, Winnipeg, Canada; 4Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China; 5Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China; 6School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China; 7Department of Plastic Surgery, Nanfang Hospital, Guangzhou, People's Republic of China*These authors contributed equally to this work Abstract: Nanosilver particles (NSPs), are among the most attractive nanomaterials, and have been widely used in a range of biomedical applications, including diagnosis, treatment, drug delivery, medical device coating, and for personal health care. With the increasing application of NSPs in medical contexts, it is becoming necessary for a better understanding of the mechanisms of NSPs' biological interactions and their potential toxicity. In this review, we first introduce the synthesis routes of NSPs, including physical, chemical, and biological or green synthesis. Then the unique physiochemical properties of NSPs, such as antibacterial, antifungal, antiviral, and anti-inflammatory activity, are discussed in detail. Further, some recent applications of NSPs in prevention, diagnosis, and treatment in medical fields are described. Finally, potential toxicology considerations of NSPs, both in vitro and in vivo, are also addressed.Keywords: nanosilver particles, synthesis, biomedical application, toxicity