Scientific Reports (May 2022)

In vitro cytotoxicity and osteogenic potential of quaternary Mg-2Zn-1Ca/X-Mn alloys for craniofacial reconstruction

  • Somasundaram Prasadh,
  • Manoj Gupta,
  • Raymond Wong

DOI
https://doi.org/10.1038/s41598-022-12490-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Cytotoxicity of any biomedical material needs to be investigated for successful application within the human tissues. In this study, manganese in low amounts of 0.3, 0.5 and 0.7 (wt.%) was added to Mg2Zn1Ca alloy using Disintegrated Melt Deposition (DMD) followed by hot extrusion and the extruded alloys were tested for in vitro cytocompatibility using cell viability assays (CCK-8, LDH enzyme release assay, cell cytoskeleton and cell morphology) and in vitro osteogenic potential was evaluated using ALP, Alizarin Red and RT-PCR assays. Addition of manganese improved the cell viability and osteogenic potential in variable concentrations. The Mg2Zn1Ca /0.3 Mn and Mg2Zn1Ca /0.5 Mn alloys showed increased cell viability percentage compared to Mg2Zn1Ca alloys. The cytotoxicity percentage at the end of 24 h culture for Mg2Zn1Ca /0.3 Mn alloys showed lesser cytotoxicity percentage (~ 8%) when compared to the Mg2Zn1Ca /0.5 Mn (~ 13%) and Mg2Zn1Ca /0.7 Mn (~ 16%) samples. All the alloys showed good initial cell attachment, osteogenic potential and cell spreading. The results of this study validates great potential of Mg2Zn1Ca alloys with manganese addition and exhibited great potential for to be used as temporary implant materials in craniofacial reconstruction.