Climate (Mar 2023)

Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned

  • Punnoli Dhanya,
  • Vellingiri Geethalakshmi

DOI
https://doi.org/10.3390/cli11030060
Journal volume & issue
Vol. 11, no. 3
p. 60

Abstract

Read online

Drought is one of the most challenging disasters that impact the natural and cultural ecosystems across the world, especially in the climate dependent sectors of arid and semi-arid areas. The aim of this article is to share the experiences gained and enhance the readers’ awareness on the status of drought and process of the early warning systems (EWS) in south India. Drought status of three agroecologically different states is included in this article, such as Kerala, Tamil Nadu and Telangana. As far as Tamil Nadu is concerned, Karur, Thuthukudi, Krishnagiri, Namakkal, Trichy and Thirunelveli districts are water scarce compared to other districts in the state. The districts such as Wayanad, Thiruvananthapuram, Idukki and Palakkad in Kerala have received lesser rainfall compared to the other parts of the state during the period 1981 to 2019. In Telangana, the mandals such as Nagarkurnool, Jogulamba-Gadwal, Wanaparthy, Mahabubnagar Nalgonda and Yedadri are frequently hit by dry spells and droughts. As a case study, weather early warning dissemination, carried out at Parambikulam Aliyar basin, Coimbatore, Tamil Nadu, during Khariff and Rabi seasons, using IMDs medium and extended range forecast is also elaborated in particular in the article. As far as the accuracy of forecast is concerned, probability of false detection (false alarm rate) was found to be 0.81 for Khariff and 0.30 for Rabi season, indicating the need for better performance in the accuracy of dry spell early warning, disaster preparedness and response. In-spite of this, access to early warning has supported the farmers during harvest and land preparation with a utility score of 72% and 59%, respectively. In Parambikulam Aliyar basin, remote sensing products such as MODIS-NDVI, NDWI and TWI was also used to identify the real-time progression of monthly vegetative condition for Kharif and Rabi seasons. NDVI values were used to monitor the district level vegetation condition and compared it with the drought year 2016, the difference in area under barren land was 76% less during Khariff, 2021 and 44% during Rabi, 2021.This study is a compilation of lessons learned from different states and the existing knowledge and practice in early warnings, and recommends the need for a holistic approach in drought and dry spell monitoring along with better accuracy and dissemination to minimize climate-related shocks in agriculture.

Keywords