High Temperature Materials and Processes (May 2021)

Evolution regularity of temperature field of active heat insulation roadway considering thermal insulation spraying and grouting: A case study of Zhujidong Coal Mine, China

  • Yao Weijing,
  • Lyimo Happiness,
  • Pang Jianyong

DOI
https://doi.org/10.1515/htmp-2021-0023
Journal volume & issue
Vol. 40, no. 1
pp. 151 – 170

Abstract

Read online

To study the active heat insulation roadways of high-temperature mines considering thermal insulation and injection, a high-temperature −965 m return air roadway of Zhujidong Coal Mine (Anhui Province, China) is selected as a prototype. The ANSYS numerical simulation method is used for the sensitivity analysis of heat insulation grouting layers with different thermal conductivities and zone ranges and heat insulation spray layers with different thermal conductivities and thicknesses; thus, their effects on the heat-adjusting zone radius, surrounding rock temperature field, and wall temperature are studied. The results show that the tunneling head temperature of the Zhujidong Mine is >27°C all year round, consequently causing serious heat damage. The heat insulation circle formed by thermal insulation spraying and grouting can effectively alleviate the disturbance of roadway airflow to the surrounding rock temperature field, thereby significantly reducing the heat-adjusting zone radius and wall temperature. The decrease in the thermal conductivities of the grouting and spray layers, expansion of the grouting layer zone, and increase in the spray layer thickness help effectively reduce the heat-adjusting zone radius and wall temperature. This trend decreases significantly with the ventilation time. A sensitivity analysis shows that the use of spraying and grouting materials of low thermal conductivity for thermal insulation is a primary factor in determining the temperature field distribution, while the range of the grouting layer zone and the spray layer thickness are secondary factors. The influence of the increased surrounding rock radial depth and ventilation time is negligible. Thus, the application of thermal insulation spraying and grouting is essential for the thermal environment control of mine roadways. Furthermore, the research and development of new spraying and grouting materials with good thermal insulation capabilities should be considered.

Keywords