Health and Quality of Life Outcomes (May 2007)

Baseline characteristics influencing quality of life in women undergoing gynecologic oncology surgery

  • Jenison Eric L,
  • Gibbons Heidi E,
  • Gil Karen M,
  • Hopkins Michael P,
  • von Gruenigen Vivian E

DOI
https://doi.org/10.1186/1477-7525-5-25
Journal volume & issue
Vol. 5, no. 1
p. 25

Abstract

Read online

Abstract Background Quality of life (QoL) measurements are important in evaluating cancer treatment outcomes. Factors other than cancer and its treatment may have significant effects on QoL and affect assessment of treatments. Baseline data from longitudinal studies of women with endometrial or ovarian cancer or adnexal mass determined at surgery to be benign were analyzed to determine the degree to which QoL is affected by baseline differences in demographic variables and health. Methods This study examined the effect of independent variables on domains of the Functional Assessment of Cancer Therapy (FACT-G) pre-operatively in gynecologic oncology patients undergoing surgery for pelvic mass suspected to be malignant or endometrial cancer. Patients also completed the Short Form Medical Outcomes Survey (SF-36) questionnaire (a generic health questionnaire that measures physical and mental health). Independent variables were surgical diagnosis (ovarian or endometrial cancer, benign mass), age, body mass index (BMI), educational level, marital status, smoking status, physical (PCS) and mental (MCS) summary scores of the SF-36. Multiple regression analysis was used to determine the influence of these variables on FACT-G domain scores (physical, functional, social and emotional well-being). Results Data were collected on 157 women at their pre-operative visit (33 ovarian cancer, 45 endometrial cancer, 79 determined at surgery to be benign). Mean scores on the FACT-G subscales and SF-36 summary scores did not differ as a function of surgical diagnosis. PCS, MCS, age, and educational level were positively correlated with physical well-being, while increasing BMI was negatively correlated. Functional well-being was positively correlated with PCS and MCS and negatively correlated with BMI. Social well-being was positively correlated with MCS and negatively correlated with BMI and educational level. PCS, MCS and age were positively correlated with emotional well-being. Models that included PCS and MCS accounted for 30 to 44% of the variability in baseline physical, emotional, and functional well-being on the FACT-G. Conclusion At the time of diagnosis and treatment, patients' QoL is affected by inherent characteristics. Assessment of treatment outcome should take into account the effect of these independent variables. As treatment options become more complex, these variables are likely to be of increasing importance in evaluating treatment effects on QoL.