The Astrophysical Journal Letters (Jan 2023)

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

  • Gabriella Agazie,
  • Akash Anumarlapudi,
  • Anne M. Archibald,
  • Zaven Arzoumanian,
  • Paul T. Baker,
  • Bence Bécsy,
  • Laura Blecha,
  • Adam Brazier,
  • Paul R. Brook,
  • Sarah Burke-Spolaor,
  • Rand Burnette,
  • Robin Case,
  • Maria Charisi,
  • Shami Chatterjee,
  • Katerina Chatziioannou,
  • Belinda D. Cheeseboro,
  • Siyuan Chen,
  • Tyler Cohen,
  • James M. Cordes,
  • Neil J. Cornish,
  • Fronefield Crawford,
  • H. Thankful Cromartie,
  • Kathryn Crowter,
  • Curt J. Cutler,
  • Megan E. DeCesar,
  • Dallas DeGan,
  • Paul B. Demorest,
  • Heling Deng,
  • Timothy Dolch,
  • Brendan Drachler,
  • Justin A. Ellis,
  • Elizabeth C. Ferrara,
  • William Fiore,
  • Emmanuel Fonseca,
  • Gabriel E. Freedman,
  • Nate Garver-Daniels,
  • Peter A. Gentile,
  • Kyle A. Gersbach,
  • Joseph Glaser,
  • Deborah C. Good,
  • Kayhan Gültekin,
  • Jeffrey S. Hazboun,
  • Sophie Hourihane,
  • Kristina Islo,
  • Ross J. Jennings,
  • Aaron D. Johnson,
  • Megan L. Jones,
  • Andrew R. Kaiser,
  • David L. Kaplan,
  • Luke Zoltan Kelley,
  • Matthew Kerr,
  • Joey S. Key,
  • Tonia C. Klein,
  • Nima Laal,
  • Michael T. Lam,
  • William G. Lamb,
  • T. Joseph W. Lazio,
  • Natalia Lewandowska,
  • Tyson B. Littenberg,
  • Tingting Liu,
  • Andrea Lommen,
  • Duncan R. Lorimer,
  • Jing Luo,
  • Ryan S. Lynch,
  • Chung-Pei Ma,
  • Dustin R. Madison,
  • Margaret A. Mattson,
  • Alexander McEwen,
  • James W. McKee,
  • Maura A. McLaughlin,
  • Natasha McMann,
  • Bradley W. Meyers,
  • Patrick M. Meyers,
  • Chiara M. F. Mingarelli,
  • Andrea Mitridate,
  • Priyamvada Natarajan,
  • Cherry Ng,
  • David J. Nice,
  • Stella Koch Ocker,
  • Ken D. Olum,
  • Timothy T. Pennucci,
  • Benetge B. P. Perera,
  • Polina Petrov,
  • Nihan S. Pol,
  • Henri A. Radovan,
  • Scott M. Ransom,
  • Paul S. Ray,
  • Joseph D. Romano,
  • Shashwat C. Sardesai,
  • Ann Schmiedekamp,
  • Carl Schmiedekamp,
  • Kai Schmitz,
  • Levi Schult,
  • Brent J. Shapiro-Albert,
  • Xavier Siemens,
  • Joseph Simon,
  • Magdalena S. Siwek,
  • Ingrid H. Stairs,
  • Daniel R. Stinebring,
  • Kevin Stovall,
  • Jerry P. Sun,
  • Abhimanyu Susobhanan,
  • Joseph K. Swiggum,
  • Jacob Taylor,
  • Stephen R. Taylor,
  • Jacob E. Turner,
  • Caner Unal,
  • Michele Vallisneri,
  • Rutger van Haasteren,
  • Sarah J. Vigeland,
  • Haley M. Wahl,
  • Qiaohong Wang,
  • Caitlin A. Witt,
  • Olivia Young,
  • The NANOGrav Collaboration

DOI
https://doi.org/10.3847/2041-8213/acdac6
Journal volume & issue
Vol. 951, no. 1
p. L8

Abstract

Read online

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 10 ^14 , and this same model is favored over an uncorrelated common power-law spectrum model with Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical background distribution for the latter Bayes factors using a method that removes interpulsar correlations from our data set, finding p = 10 ^−3 (≈3 σ ) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of interpulsar correlations yields p = 5 × 10 ^−5 to 1.9 × 10 ^−4 (≈3.5 σ –4 σ ). Assuming a fiducial f ^−2/3 characteristic strain spectrum, as appropriate for an ensemble of binary supermassive black hole inspirals, the strain amplitude is ${2.4}_{-0.6}^{+0.7}\times {10}^{-15}$ (median + 90% credible interval) at a reference frequency of 1 yr ^−1 . The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points to the gravitational-wave origin of this signal.

Keywords