Toxins (Apr 2020)

Botulinum Toxin Effects on Sensorimotor Integration in Focal Dystonias

  • Maria Ilenia De Bartolo,
  • Nicoletta Manzo,
  • Gina Ferrazzano,
  • Viola Baione,
  • Daniele Belvisi,
  • Giovanni Fabbrini,
  • Alfredo Berardelli,
  • Antonella Conte

DOI
https://doi.org/10.3390/toxins12050277
Journal volume & issue
Vol. 12, no. 5
p. 277

Abstract

Read online

(1) Background: In dystonia, the somatosensory temporal discrimination threshold (STDT) is abnormally increased at rest and higher and longer-lasting during movement execution in comparison with healthy subjects (HS), suggesting an abnormal sensorimotor integration. These abnormalities are thought to depend on abnormal proprioceptive input coming from dystonic muscles. Since Botulinum toxin-A (BT-A) reduces proprioceptive input in the injected muscles, our study investigated the effects of BT-A on STDT tested at rest and during voluntary movement execution in patients with focal dystonia. (2) Methods: We enrolled 35 patients with focal dystonia: 14 patients with cervical dystonia (CD), 11 patients with blepharospasm (BSP), and 10 patients with focal hand dystonia (FHD); and 12 age-matched HS. STDT tested by delivering paired stimuli was measured in all subjects at rest and during index finger abductions. (3) Results: Patients with dystonia had higher STDT values at rest and during movement execution than HS. While BT-A did not modify STDT at rest, it reduced the abnormal values of STDT during movement in CD and FHD patients, but not in BSP patients. (4) Conclusions: BT-A improved abnormal sensorimotor integration in CD and FHD, most likely by decreasing the overflow of proprioceptive signaling from muscle dystonic activity to the thalamus.

Keywords