BioTechniques (Mar 1999)
Detection of Chromosome Aberrations by FISH as a Function of Cell Division Cycle (Harlequin-FISH)
Abstract
Chromosome aberrations are a sensitive indicator of genetic change, and the measurement of chromosome aberration frequency in peripheral blood lymphocytes is often used as a biological dosimeter of exposure (1,4). The length of time that cells are maintained in culture before cytogenetic analysis is probably the most important in vitro factor that influences both the frequency and types of aberrations that are seen following exposure to mutagens. Therefore, for accurate cytogenetic measurements of genetic damage, cells must be analyzed in their first mitosis following exposure. As cells progress through subsequent mitotic division cycles, cells with unstable types of aberrations, e.g., dicentrics and acentric fragments, are eliminated (1,3,4). Even the use of synchronized populations of cells does not guarantee that all cells analyzed will be in their first division following treatment. Small variations in growth rate after irradiation can lead to large variations in the proportion of cells that are in their first vs. a subsequent mitosis. For example, 48 h after G0 lymphocytes are stimulated to enter the cell cycle (the standard sampling time for cytogenetic analysis), up to 50% of the cells in mitosis can be in their second division cycle (10). While there are methods available to distinguish cells in different division cycles (see Introduction), they are not easily adapted for use with standard fluorescence in situ hybridization (FISH) procedures. The goal of this study was to develop a simple approach to detect aberrations by FISH whereby cells in different division cycles could be distinguished.