Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie (Dec 2018)
Współczesne zmiany narzędzi badań statystycznych
Abstract
W artykule zwrócono uwagę na współcześnie obserwowane zmiany narzędzi statystycznych służących badaniom naukowym w zakresie analizy i prognozowania procesów społeczno-ekonomicznych. Punktem wyjścia przeprowadzonych rozważań jest klasyczny schemat badań statystycznych w naukach ekonomicznych. Zwrócono uwagę na jego ograniczenia. Wskazano na współczesne metody analizy danych, oparte na regułach sztucznej inteligencji, które pomagają wyeliminować ograniczenie klasycznego schematu badań. Metody te należą do procedur uczenia nadzorowanego. Nawiązano do podstawowych metod klasyfikacji danych, jakimi są analiza dyskryminacyjna oraz model logitowy. Następnie scharakteryzowano te metody uczenia nadzorowanego, które również mogą mieć szersze zastosowanie w badaniach społeczno-ekonomicznych. Należą do nich: naiwny klasyfikator bayesowski, sieci bayesowskie, metoda k-najbliższych sąsiadów, metoda wektorów nośnych, klasyfikatory jądrowe, sztuczne sieci neuronowe, drzewa decyzyjne oraz podejście wielomodelowe (lasy losowe, bagging, boosting). Zwrócono uwagę, że i te metody podlegają jednak pewnym ograniczeniom. Artykuł ma charakter przeglądowy i zawiera odniesienia do prac, w których zastosowano metody uczenia nadzorowanego w badaniach społeczno-ekonomicznych, opublikowanych w języku polskim.
Keywords