International Journal of Polymer Science (Jan 2020)

Influence of Bioadditives Made from Sugarcane Bagasse on Interpenetrating Polymer Networks

  • Kuan-Liang Liu,
  • Pei-Yu Kuo,
  • Jin-Lin Han,
  • Kuo-Huang Hsieh

DOI
https://doi.org/10.1155/2020/8084940
Journal volume & issue
Vol. 2020

Abstract

Read online

To achieve a sustainable bioeconomy, various bioderived additives have been developed to produce biocomposites, but only a handful of research on biocomposites focuses on the effect of bioderived additives on interpenetrating polymer networks (IPNs). This study is aimed at understanding the interaction between bioadditives and interpenetrating polymer networks and is the first study to build the relationship between bioadditive ratio and damping factor based on dynamic mechanical analysis. The IPNs were prepolymerized in bulk by isocyanate and poly(oxypropylene) polyol (PPG) with two different molecular weights (PPG 700 and PPG 1000), and then, they were grafted with bisphenol A diglycidyl ether epoxy. The bioadditives were prepared from agricultural waste, sugarcane bagasse, and the effect of the coupling agent 3-glycidoxypropyltrimethoxysilane on a bioadditive surface was also discussed in this study. The results show that modified bioadditives have significant enhancement on tensile strength and tensile modulus of polyurethane-grafted epoxy resin interpenetrating polymer networks (PU(PPG)-EP graft-IPNs). However, the enhancement is not from a strong covalent bond between matrix and additives, that is, due to the well-dispersed bioadditives which provide stiff segments. The static and dynamic mechanical performance, water absorption ratio, and morphology of the (PU(PPG)-EP graft-IPNs) elastomers were also thoroughly discussed in this study.