Buildings (Oct 2023)

Exploring the Potential of Polypropylene Fibers and Bacterial Co-Culture in Repairing and Strengthening Geopolymer-Based Construction Materials

  • Albert A. Griño,
  • Hannah Shane P. Soriano,
  • Michael Angelo B. Promentilla,
  • Jason Maximino C. Ongpeng

DOI
https://doi.org/10.3390/buildings13102668
Journal volume & issue
Vol. 13, no. 10
p. 2668

Abstract

Read online

This study explored self-healing in geopolymer mortar cured at ambient temperature using polypropylene fibers and bacterial co-cultures of Bacillus subtilis and Bacillus megaterium. Damage degree, compressive strength, ultrasonic pulse velocity (UPV), strength-regain percentage, and self-healing percentage were evaluated. A full factorial design was used, which resulted in an eight-run complete factorial design with four levels in the first factor (polypropylene content: 0%, 0.25%, 0.5%, and 0.75%) and two levels in the second factor (bacteria concentration: 0 (without) and 1 (with)). The results indicate that increasing the polypropylene fiber content enhanced strength regains up to 199.97% with 0.75% fibers and bacteria. The bacteria alone improved strength-regain percentages by 11.22% through mineral precipitation. The analysis of variance (ANOVA) showed no interaction between fibers and bacteria, but both independently improved the compressive strength. Only bacterial samples exhibited positive self-healing, ranging from 16.77 to 147.18%. The analysis using a scanning electron microscope with energy dispersive X-ray (SEM-EDX) and X-ray fluorescence (XRF) also revealed greater calcite crystal formation in bacterial samples, increasing the strength-regain and self-healing percentages. The results demonstrate that polypropylene fibers and bacteria cultures could substantially enhance the strength, durability, and self-healing percentage of geopolymer mortars. The findings present the potential of a bio-based self-healing approach for sustainable construction and repair materials.

Keywords