Experimental Physiology (Aug 2023)

Attenuated pulsatile transition to the cerebral vasculature during high‐intensity interval exercise in young healthy men

  • Jun Sugawara,
  • Takeshi Hashimoto,
  • Hayato Tsukamoto,
  • Niels H. Secher,
  • Shigehiko Ogoh

DOI
https://doi.org/10.1113/EP091119
Journal volume & issue
Vol. 108, no. 8
pp. 1057 – 1065

Abstract

Read online

Abstract High‐intensity interval exercise (HIIE) is recommended because it provides favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may be an adverse impact on the brain. We tested whether the cerebral vasculature is protected against systemic blood flow fluctuation during HIIE. Fourteen healthy men (age 24 ± 2 years) underwent four 4‐min exercises at 80–90% of maximal workload (Wmax) interspaced by 3‐min active rest at 50–60% Wmax. Transcranial Doppler measured middle cerebral artery blood velocity (CBV). Systemic haemodynamics (Modelflow) and aortic pressure (AoP, general transfer function) were estimated from an invasively recorded brachial arterial pressure waveform. Using transfer function analysis, gain and phase between AoP and CBV (0.39–10.0 Hz) were calculated. Stroke volume, aortic pulse pressure and pulsatile CBV increased during exercise (time effect: P < 0.0001 for all), but a time‐domain index of aortic–cerebral pulsatile transition (pulsatile CBV/pulsatile AoP) decreased throughout the exercise bouts (time effect: P < 0.0001). Furthermore, transfer function gain reduced, and phase increased throughout the exercise bouts (time effect: P < 0.0001 for both), suggesting the attenuation and delay of pulsatile transition. The cerebral vascular conductance index (mean CBV/mean arterial pressure; time effect: P = 0.296), an inverse index of cerebral vascular tone, did not change even though systemic vascular conductance increased during exercise (time effect: P < 0.0001). The arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature.

Keywords