Macromol (Aug 2022)
The Stability Consequences Promoted by Doping Metallic Atoms on the Degradation of Poly (ε-Caprolactone)
Abstract
The stability of polymer materials is essentially determined by the molecular structure and the presence of additives and impurities. When a polymer substrate is subjected to vigorous damage by an energetic treatment, the molecular scission generates fragments, which may be oxidized by the diffused oxygen. The traces of oxide catalysts that may be accidentally incorporated into the polymer materials initiate a faster oxidation that influences the material durability. This study presents the behavior of poly (ε-caprolactone) (PCL) loaded with 2 wt% PbZrO3 previously doped with foreign atoms (Cr, Nd, Mg, Mn, Ti) at the concentration of 0.1 mol%. The investigation procedure, chemiluminescence, reveals the acceleration of the degradation of PCL. The contribution of the metallic traces existing in the structure of PbTiO3 powder is characterized by the activation energies (Ea) involved in the propagation of oxidation. The free radicals are involved in a faster oxidation, when the polymer substrate is heated at superior rates. The comparison of the oxidation levels at the extended period of heating and irradiation indicates the sustained activities of metallic traces acting in oxide powder fillers, especially at temperatures exceeding 150 °C. The essential considerations on material strength against oxidation are presented.
Keywords