Nanoscale Research Letters (Apr 2017)
Measurements of Defect Structures by Positron Annihilation Lifetime Spectroscopy of the Tellurite Glass 70TeO2-5XO-10P2O5-10ZnO-5PbF2 (X = Mg, Bi2, Ti) Doped with Ions of the Rare Earth Element Er3+
Abstract
Abstract The objective of the study was the structural analysis of the 70TeO2-5XO-10P2O5-10ZnO-5PbF2 (X = Mg, Bi2, Ti) tellurite glasses doped with ions of the rare-earth elements Er3+, based on the PALS (positron annihilation lifetime spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, the sizes of which range from a few angstroms to a few dozen nanometers. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ 1 andτ 2. Their interpretation was based on two-state positron trapping model where the physical parameters are the positron annihilation rate and positron trapping rate.
Keywords