Medicinski Podmladak (Jan 2022)
Volumetric analysis of hippocampus and amygdala in animal model of PTSD
Abstract
Introduction: Posttraumatic stress disorder (PTSD) represents a mental disorder that occurs after life threatening situations. Animal models in psychiatry studies represent a base from which results and conclusions can be translated to human population. Amygdala and hippocampus are important neuroanatomical substrates possibly relevant to PTSD pathogenesis. Aim: The aim of study was to investigate volumetric changes that occur in hippocampus and amygdala related to PTSD animal model. Material and methods: Experiment was conducted on adult male Wistar rats. They were two groups, experimental and control. Experimental paradigm lasted for 31 days during which animals were exposed to acute and chronic stress. Acute stress was performed on the first day and ten days later. In between, animals were exposed to chronic social stress by pair rotations. Before second acute stress exposure, experimental group was divided in two subgroups from which one received dexamethasone dose. After the experiment ended, animals were sacrificed and the brain was extracted. Following the freezing process, brain tissue samples were cut and prepared for microscopy using. This was followed by volumetric analysis of hippocampus and amygdala. Measurements were performed bilaterally using Image Tool 3.0 Software. Results: Results showed volumetric changes in these structures. Hippocampus had smaller volume in the experimental subgroup without dexamethasone (x̄ = 0.6144) compared to the control group (x̄ = 0.9688). Amygdala, as well, had smaller volumes in same subgroup compared to the control (x̄ = 10.0156 compared to x̄ = 11.5041). Conclusion: Our study provided results in agreement with several previous studies on rodents and contributes to the assumption that hippocampus and amygdala have significance in PTSD etiology. Further goal is to expand our study which will help us to better understand the disorder itself.
Keywords