Virus-Host Dynamics in Archaeal Groundwater Biofilms and the Associated Bacterial Community Composition
Victoria Turzynski,
Lea Griesdorn,
Cristina Moraru,
André R. Soares,
Sophie A. Simon,
Tom L. Stach,
Janina Rahlff,
Sarah P. Esser,
Alexander J. Probst
Affiliations
Victoria Turzynski
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Lea Griesdorn
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Cristina Moraru
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
André R. Soares
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Sophie A. Simon
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Tom L. Stach
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Janina Rahlff
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Sarah P. Esser
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Alexander J. Probst
Environmental Microbiology and Biotechnology (EMB), Department of Chemistry, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
Spatial and temporal distribution of lytic viruses in deep groundwater remains unexplored so far. Here, we tackle this gap of knowledge by studying viral infections of Altivir_1_MSI in biofilms dominated by the uncultivated host Candidatus Altiarchaeum hamiconexum sampled from deep anoxic groundwater over a period of four years. Using virus-targeted direct-geneFISH (virusFISH) whose detection efficiency for individual viral particles was 15%, we show a significant and steady increase of virus infections from 2019 to 2022. Based on fluorescence micrographs of individual biofilm flocks, we determined different stages of viral infections in biofilms for single sampling events, demonstrating the progression of infection of biofilms in deep groundwater. Biofilms associated with many host cells undergoing lysis showed a substantial accumulation of filamentous microbes around infected cells probably feeding off host cell debris. Using 16S rRNA gene sequencing across ten individual biofilm flocks from one sampling event, we determined that the associated bacterial community remains relatively constant and was dominated by sulfate-reducing members affiliated with Desulfobacterota. Given the stability of the virus-host interaction in these deep groundwater samples, we postulate that the uncultivated virus-host system described herein represents a suitable model system for studying deep biosphere virus-host interactions in future research endeavors.