Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review
Yan Peng,
Chenjun Shi,
Xu Wu,
Yiming Zhu,
Songlin Zhuang
Affiliations
Yan Peng
Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Chenjun Shi
Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Xu Wu
Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Yiming Zhu
Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Songlin Zhuang
Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Terahertz (THz) waves are electromagnetic waves with frequency in the range from 0.1 to 10 THz. THz waves have great potential in the biomedical field, especially in cancer diagnosis, because they exhibit low ionization energy and can be used to discern most biomolecules based on their spectral fingerprints. In this paper, we review the recent progress in two applications of THz waves in cancer diagnosis: imaging and spectroscopy. THz imaging is expected to help researchers and doctors attain a direct intuitive understanding of a cancerous area. THz spectroscopy is an efficient tool for component analysis of tissue samples to identify cancer biomarkers. Additionally, the advantages and disadvantages of the developed technologies for cancer diagnosis are discussed. Furthermore, auxiliary techniques that have been used to enhance the spectral signal-to-noise ratio (SNR) are also reviewed.