Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica (May 2022)
Torsion subgroups of rational Mordell curves over some families of number fields
Abstract
Mordell curves over a number field K are elliptic curves of the form y2 = x3 + c, where c ∈ K \ {0}. Let p ≥ 5 be a prime number, K a number field such that [K : ℚ] ∈ {2p, 3p}. We classify all the possible torsion subgroups E(K)tors for all Mordell curves E defined over ℚ when [K : ℚ] ∈ {2p, 3p}.
Keywords