East European Journal of Physics (Jun 2024)

Heat and Mass Transport Aspects of Nanofluid Flow towards a Vertical Flat Surface influenced by Electrified Nanoparticles and Electric Reynolds Number

  • Aditya Kumar Pati,
  • Sujit Mishra,
  • Ashok Misra,
  • Saroj Kumar Mishra

DOI
https://doi.org/10.26565/2312-4334-2024-2-22
Journal volume & issue
no. 2
pp. 234 – 241

Abstract

Read online

This study examines the heat and mass transfer aspects of the natural convective flow of a nanofluid along a vertical flat surface, incorporating electrified nanoparticles and electric Reynolds number. While conventional nanofluid models like Buongiorno’s model overlook the nanoparticle electrification and electric Reynolds number mechanisms, this study addresses the nanoparticle electrification and electric Reynolds number mechanisms by justifying its relevance, particularly when tribo-electrification results from Brownian motion. This incorporation of the electric Reynold number and nanoparticle electrification mechanism is a unique aspect of this investigation. Using the similarity method and nondimensionalization, the governing partial differential equations of the flow are transformed into a set of locally similar equations. MATLAB's bvp4c solver is employed to solve this set of equations, along with the boundary conditions. The obtained results are validated by comparison with those from previously published works. Graphical representations are provided for the numerical outcomes of non-dimensional velocity, concentration and temperature concerning the nanoparticle electrification parameter and electric Reynolds number. The combined effects of the nanoparticle electrification parameter and the electric Reynolds number on non-dimensional heat and mass transfer coefficients are examined in tabular form. Furthermore, the impact of the nanoparticle electrification parameter on both heat and mass transfer for varying values of the Brownian motion parameter is explored graphically. The primary finding of this investigation indicates that the electrification mechanism of nanoparticles quickens the transfer of heat and mass from a flat surface to nanofluid, suggesting promising prospects for utilization in cooling systems and biomedical applications.

Keywords