Myosin 1b Regulates Nuclear AKT Activation by Preventing Localization of PTEN in the Nucleus
Yi Yu,
Yuyan Xiong,
Diogo Ladeiras,
Zhihong Yang,
Xiu-Fen Ming
Affiliations
Yi Yu
Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
Yuyan Xiong
Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
Diogo Ladeiras
Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
Zhihong Yang
Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland; Corresponding author
Xiu-Fen Ming
Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland; Corresponding author
Summary: Insulin-induced AKT activation is dependent on phosphoinositide 3-kinase and opposed by tumor suppressor phosphatase and tensin homolog (PTEN). Our previous study demonstrates that myosin 1b (MYO1B) mediates arginase-II-induced activation of mechanistic target of rapamycin complex 1 that is regulated by AKT. However, the role of MYO1B in AKT activation is unknown. Here we show that silencing MYO1B in mouse embryonic fibroblasts (MEF) inhibits insulin-induced nuclear but not cytoplasmic AKT activation accompanied by elevated nuclear PTEN level. Co-immunoprecipitation, co-immunostaining, and proximity ligation assay show an interaction of MYO1B and PTEN resulting in reduced nuclear PTEN. Moreover, the elevated nuclear PTEN upon silencing MYO1B promotes apoptosis of MEFs and melanoma B16F10 cells. Taken together, we demonstrate that MYO1B, by interacting with PTEN, prevents nuclear localization of PTEN contributing to nuclear AKT activation and suppression of cell apoptosis. This may present a therapeutic approach for cancer treatment such as melanoma. : Biochemistry; Biological Sciences; Cell Biology; Molecular Biology Subject Areas: Biochemistry, Biological Sciences, Cell Biology, Molecular Biology