Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer (Dec 2024)
Analysis of Hybrid Learning Sentiment among Information Systems Students using The Naïve Bayes Classifier
Abstract
Hybrid learning, which combines online and face-to-face instruction, has gained significant attention. Particularly in the Faculty of Computer Science, student engagement in hybrid learning is a central concern that arises during implementation. Hybrid, or blended learning, integrates various teaching methods, such as face-to-face, computer-based, and mobile learning, and offers advantages by reducing the time required for meetings and information delivery. Sentiment analysis, a branch of text mining, aims to determine public opinion or sentiment on topics, events, or issues. This study surveyed 112 Information Systems students using an online questionnaire to assess their responses to hybrid learning, classified as positive, negative, or neutral using the Naïve Bayes classifier. The research stages included data collection, preprocessing, Naïve Bayes model training, model evaluation, and sentiment analysis. The study aimed to analyze hybrid learning’s impact on students' learning experiences and assess the accuracy of the Naïve Bayes method in classifying sentiments regarding this impact. The results indicated that the initial test had an accuracy of 60.87% without using the SMOTE up-sampling operator, while the second test achieved 80.65% accuracy with the operator.
Keywords