BMC Genomics (Oct 2017)
An uncertain model-based approach for identifying dynamic protein complexes in uncertain protein-protein interaction networks
Abstract
Abstract Background Recently, researchers have tried to integrate various dynamic information with static protein-protein interaction (PPI) networks to construct dynamic PPI networks. The shift from static PPI networks to dynamic PPI networks is essential to reveal the cellular function and organization. However, it is still impossible to construct an absolutely reliable dynamic PPI networks due to the noise and incompletion of high-throughput experimental data. Results To deal with uncertain data, some uncertain graph models and theories have been proposed to analyze social networks, electrical networks and biological networks. In this paper, we construct the dynamic uncertain PPI networks to integrate the dynamic information of gene expression and the topology information of high-throughput PPI data. The dynamic uncertain PPI networks can not only provide the dynamic properties of PPI, which are neglected by static PPI networks, but also distinguish the reliability of each protein and PPI by the existence probability. Then, we use the uncertain model to identify dynamic protein complexes in the dynamic uncertain PPI networks. Conclusion We use gene expression data and different high-throughput PPI data to construct three dynamic uncertain PPI networks. Our approach can achieve the state-of-the-art performance in all three dynamic uncertain PPI networks. The experimental results show that our approach can effectively deal with the uncertain data in dynamic uncertain PPI networks, and improve the performance for protein complex identification.