Complexity (Jan 2021)
A Novel Fast Image Stitching Method Based on the Combination of SURF and Cell
Abstract
The traditional image stitching method has some shortcomings such as double shadow, chromatic aberration, and stitching. In view of this, this paper proposes a power function-weighted image stitching method that combines SURF optimization and improved cell acceleration. First, the method uses the cosine similarity to preliminarily judge the similarity of the feature points and then uses the two-way consistency mutual selection to filter the feature point pairs again. Simultaneously, some incorrect matching points in the reverse matching are eliminated. Finally, the method uses the MSAC algorithm to perform fine matching. Then, the power function-weighted fusion algorithm is used to calculate the weight of the center point. The power function weight of the accelerated cell is used to perform the final image fusion. The experimental results show that the matching accuracy rate of the proposed method is about 11 percentage points higher than the traditional SURF algorithm, and the time is reduced by about 1.6 s. In the image fusion stage, this paper first selects images with different brightness, angles, resolutions, and scales to verify the effectiveness of the proposed method. The results show that the proposed method effectively solves the ghosting and stitching seams. Comparing with the traditional fusion algorithm, the time consumption is reduced by at least 2 s, the mean square error is reduced by about 1.32%∼1.48%, and the information entropy is improved by about 0.98%∼1.70%. The proposed method has better performance in matching accuracy and fusion effect and has better stitching quality.