Scientific Reports (Oct 2021)

Leaf 13C and 15N composition shedding light on easing drought stress through partial K substitution by Na in eucalyptus species

  • Nikolas Souza Mateus,
  • Antonio Leite Florentino,
  • Jessica Bezerra Oliveira,
  • Elcio Ferreira Santos,
  • Salete Aparecida Gaziola,
  • Monica Lanzoni Rossi,
  • Francisco Scaglia Linhares,
  • José Albertino Bendassolli,
  • Ricardo Antunes Azevedo,
  • José Lavres

DOI
https://doi.org/10.1038/s41598-021-99710-1
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 15

Abstract

Read online

Abstract This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.