Engineering Applications of Computational Fluid Mechanics (Jan 2021)

Influence of wind barrier on the transient aerodynamic performance of high-speed trains under crosswinds at tunnel–bridge sections

  • Weichao Yang,
  • E. Deng,
  • Xuhui He,
  • Lusen Luo,
  • Zhihui Zhu,
  • Youwu Wang,
  • Zhitang Li

DOI
https://doi.org/10.1080/19942060.2021.1918257
Journal volume & issue
Vol. 15, no. 1
pp. 727 – 746

Abstract

Read online

Porous wind barriers (PWBs) are gradually applied to tunnel–bridge–tunnel infrastructures (TBTIs) along high-speed railway lines. Due to the remarkable aerodynamic effect of high-speed trains (HSTs), the windproof performance of a PWB at tunnel–bridge section (TBS) is particularly critical when a HST passes through the TBTI under crosswind. And it seems to be easily ignored by researchers. This study aims to determine the influence mechanism of the PWB in the TBS. A CFD dynamic model of air–train–PWB was built based on porous media theory, and its reliability is verified by model and field tests. The main results are as follows: the corresponding variation amplitudes of the train’s aerodynamic load coefficients are reduced by 36–95% when a PWB is set in the TBS; adopting the same design parameters along the full-length PWB on the TBTI is unreasonable; the PWB height and porosity in the TBS must be increased and reduced more than 33%, respectively, to achieve equivalent windproof performance. The conclusions in this paper can provide a preliminary idea for the optimization design of the PWB on the TBTI.

Keywords