Sensors (Nov 2022)

Finite Element Model Updating of RC Bridge Structure with Static Load Testing: A Case Study of Vietnamese ThiThac Bridge in Coastal and Marine Environment

  • Duc Cong Nguyen,
  • Marek Salamak,
  • Andrzej Katunin,
  • Michael Gerges

DOI
https://doi.org/10.3390/s22228884
Journal volume & issue
Vol. 22, no. 22
p. 8884

Abstract

Read online

Diagnostic load testing refers to the use of the measured historical responses of the structure in the field data to better understand its dynamic and static structural behaviours. It is important and necessary to predict the health state, load capacity, and aging of the structure by updating the finite element (FE) model, which can give useful information to aid the design of retrofits and the maintenance of the existing bridge in the future. The paper presents an update of the full-scale FE model for the reinforced concrete (RC) bridge structure over the seawater river based on the experimental strains under the static load testing in which the representative FE model of the actual structure is determined from the optimisation procedures. The optimisation variables are applied, including the cross-sectional properties and concrete material calibrated through the genetic algorithm (GA) optimisation in the MATLAB software, which interfaces with the FE modelling in the scripting of the SOFISTIK TEDDY software automatically. The bending moments at the mid-span of the RC girders are determined in the FE modelling to compute stresses, which are compared with the measured stresses through optimisation scenarios with a percentage error of the objective function less than 10%. The measured data of concrete strains are recorded from reusable strain transducers installed on the mid-span girders for every bridge span, which are used to calibrate the bridge model in static load testing. The novelty of the solution is to implement innovative techniques using field data as an improved approach for calibrating automatically the analytical FE model parameters of all RC spans of the bridge until its static behaviours are very similar to those of the actual bridge. The final updated FE modelling is used to apply truck load configurations according to bridge design standards such as the AASHTO specifications, which can predict the load limits of the existing bridge structure more accurately and reliably. These proposed approaches can be applied to large bridges as well as complex structures with supporting FE analysis software and data processing software.

Keywords