Materials Today Bio (Feb 2024)

Microfluidic printed 3D bioactive scaffolds for postoperative treatment of gastric cancer

  • Jiante Li,
  • Tianru Zhu,
  • Yiwei Jiang,
  • Qingfei Zhang,
  • Yan Zu,
  • Xian Shen

Journal volume & issue
Vol. 24
p. 100911

Abstract

Read online

Tumor recurrence and tissue regeneration are two major challenges in the postoperative treatment of cancer. Current research hotspots are focusing on developing novel scaffold materials that can simultaneously suppress tumor recurrence and promote tissue repair. Here, we propose a microfluidic 3D-printed methacrylate fish gelatin (F-GelMA@BBR) scaffold loaded with berberine (BBR) for the postoperative treatment of gastric cancer. The F-GelMA@BBR scaffold displayed a significant killing effect on gastric cancer MKN-45 cells in vitro and demonstrated excellent anti-recurrence efficiency in gastric cancer postoperative models. In vitro experiments have shown that F-GelMA@BBR exhibits significant cytotoxicity on gastric cancer cells while maintaining the cell viability of normal cells. The results of in vivo experiments show that F-GelMA@BBR can significantly suppress the tumor volume to 49.7 % of the control group. In addition, the scaffold has an ordered porous structure and good biocompatibility, which could support the attachment and proliferation of normal cells to promote tissue repair at the tumor resection site. These features indicated that such scaffold material is a promising candidate for postoperative tumor treatment in the practical application.

Keywords