Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance
Christoph Sasse,
Emmanouil Bastakis,
Fruzsina Bakti,
Annalena M. Höfer,
Isabella Zangl,
Christoph Schüller,
Anna M. Köhler,
Jennifer Gerke,
Sven Krappmann,
Florian Finkernagel,
Rebekka Harting,
Joseph Strauss,
Kai Heimel,
Gerhard H. Braus
Affiliations
Christoph Sasse
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Emmanouil Bastakis
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Fruzsina Bakti
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Annalena M. Höfer
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Isabella Zangl
Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
Christoph Schüller
Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
Anna M. Köhler
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Jennifer Gerke
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Sven Krappmann
Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Florian Finkernagel
Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
Rebekka Harting
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
Joseph Strauss
Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
Kai Heimel
Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
Gerhard H. Braus
Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
ABSTRACTZinc cluster transcription factors (Zcfs) encoding zcf genes are exclusive for fungi and required for multiple cellular processes including metabolism and development. Genome-wide screening of 228 zinc cluster transcription factor encoding genes by overexpression in Aspergillus fumigatus revealed 11 genes which provided increased tolerance to the broadly applied azole voriconazole or to the polyene amphotericin B or to both. These include four oxidative stress and drug resistance genes (odrA-D) genes encoding factors, which provide broad cellular stress protection. Thereby, the corresponding fungal OdrA/Mdu2- and AtrR/OdrD-dependent genetic networks are interconnected. OdrA/Mdu2 activates atrR/odrD transcription by direct binding to the promoter, whereas AtrR/OdrD functions as repressor of odrA/mdu2 expression. odrA/mdu2 overexpression provides combined resistance to amphotericin B, voriconazole, itraconazole, and reactive oxygen species generated by menadione. OdrA/Mdu2-mediated itraconazole resistance is evoked by direct regulation of the transporter encoding gene mdr1. Oxidative stress-inducing substances like amphotericin B and menadione promote OdrA/Mdu2 accumulation in the nucleus to regulate stress response genes like mdr1 and the putative glutathione-S-transferase encoding gene gstD. The expression levels and external stress conditions fostering nuclear accumulation of OdrA/Mdu2 determine the regulation of the target genes. Hence, OdrA/Mdu2 provides a combined adaptation strategy for survival in nature or within a potential host, where this fungus represents the most common agent for human mold pneumonia worldwide. The OdrA/Mdu2 controlled genetic network highlights the tight connection between oxidative stress response and antifungal drug adaption to secure A. fumigatus survival in various hostile environments.IMPORTANCEAn overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.