Nuclear Materials and Energy (Mar 2025)

Numerical assessment of ICRF-specific plasma-wall interaction in the new ITER baseline using the SSWICH-SW code

  • L. Colas,
  • W. Helou,
  • G. Urbanczyk,
  • V. Bobkov,
  • F. Calarco,
  • N. Fedorczak,
  • D. Milanesio,
  • J. Hillairet

Journal volume & issue
Vol. 42
p. 101831

Abstract

Read online

In 2023, switching the material on the first wall of ITER to tungsten (W) was recommended. In magnetic Fusion devices, waves in the Ion Cyclotron Range of Frequencies (ICRF) interact with the Scrape-Off Layer (SOL) via RF-sheath rectification. This contribution re-assesses this phenomenon close to the ITER ICRF antenna, focusing on the ICRF-specific gross erosion of W from the antenna port sides. Our quantitative estimates rely on predictive multi-2D numerical simulations of the ICRF antenna environment using the SSWICH-SW code. They combine Slow Wave propagation from the antenna mouth to the SOL, the excitation of RF oscillations in the sheath voltages at the antenna port sides and a subsequent DC biasing of the SOL. Maps of the parallel RF electric field at the antenna mouth, from the antenna code TOPICA, excite the system. Our simulations cover more than four decades in the local densities near the antenna. Since both the sputtering and the local heat loads are proportional to the local particle fluxes, the most intense Plasma-Wall Interaction is found for high local density, with or without ICRF waves. In these conditions, larger margins also exist for coupling the ICRF power. We tested several operational trade-offs between these two constraints. The simulated target plasma contains 2% of neon ions. These are efficient at sputtering W, already at low accelerating voltages. Consequently, although the RF-sheath rectification sufficiently amplifies the local sputtering at the antenna port for a detection using visible spectroscopy, the ICRF-induced increment of the gross W production represents at worse 22% of the W source expected from thermal sheaths over the eighteen out-board mid-plane ports. An upper bound, independent of our main assumptions, is proposed for this enhancement factor. This moderate expected global increase questions the ability to detect ICRF-specific W contamination of the plasma core, even at the planned maximal ICRF power.

Keywords