Лëд и снег (Apr 2018)

SNOW THICKNESS ON AUSTRE GRØNFJORDBREEN, SVALBARD, FROM RADAR MEASUREMENTS AND STANDARD SNOW SURVEYS

  • I. I. Lavrentiev,
  • S. S. Kutuzov,
  • A. F. Glazovsky,
  • Yu. Ya. Macheret,
  • N. I. Osokin,
  • A. V. Sosnovsky,
  • R. А. Chernov,
  • G. A. Cherniakov

DOI
https://doi.org/10.15356/2076-6734-2018-1-5-20
Journal volume & issue
Vol. 58, no. 1
pp. 5 – 20

Abstract

Read online

Summary Comparison of two methods of measurements of snow cover thickness on the glacier Austre Grønfjordbreen, Svalbard was performed in the spring of 2014. These methods were the radar (500 MHz) observations and standard snow surveys. Measurements were conducted in 77 different points on the surface of the glacier. A good correlation (R2 = 0.98) was revealed. In comparison with the data of snow surveys, the radar measurements show a similar but more detailed pattern of the distribution of the snow cover depth. The discrepancy between the depths of snow cover on maps plotted from data of both methods did not exceed 30 cm in most parts of the glacier. The standard error of interpolation of the radar data onto the entire glacier surface amounts, on average, to 18 cm. This corresponds to the error of radar measurements of 18.8% when an average snow depth is about 160 cm and 9.4% at its maximum thickness of 320 cm. The distance between the measurement points at which the spatial covariance of the snow depth disappears falls between 236 and 283 m along the glacier, and between 117 and 165 m across its position. We compared the results of radar measurements of the pulse-delay time of reflections from the base of the snow cover with the data of manual probe measurements at 10 points and direct measurements of snow depth and average density in 12 snow pits. The average speed of radio waves propagation in the snow was determined as Vcr = 23.4±0.2 cm ns−1. This magnitude and the Looyenga and Kovacs formulas allowed estimating the average density of snow cover ρL = 353.1±13.1 kg m−3 and ρK = 337.4±12.9 kg m−3. The difference from average density measured in 12 pits ρav.meas = 387.4±12.9 kg m−3 amounts to −10.8% and −14.8%. In 2014, according to snow and radar measurements, altitudinal gradient of snow accumulation on the glacier Austre Grønfjordbreen was equal to 0.21 m/100 m, which is smaller than the average values (0.35 m/100 m). According to the results of snow measurements of 2011–2014, the average thickness of the snow cover on the glacier Austre Grønfjordbreen was by 17 cm greater than in 1979. In the very snowy year 2012, it was higher by 21.5 cm in comparison with the year 1979, and its spatial variability (standard deviation σН) had increased by 25.6 cm. Estimates of spatial and temporal variability of snow cover depth will be used to analyze the hydrothermal state of the glacier and its changes with regard to revealed features and climatic trends.

Keywords