Materials & Design (May 2019)

Microstructure evolution and electrochemical properties of TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing

  • Hao Gu,
  • Zihao Ding,
  • Zhi Yang,
  • Weiqiang Yu,
  • Wenjie Zhang,
  • Weijie Lu,
  • Lai-Chang Zhang,
  • Kuaishe Wang,
  • Liqiang Wang,
  • Yuan-fei Fu

Journal volume & issue
Vol. 169

Abstract

Read online

Forming stable anti-corrosion surface layer and homogenized microstructure on the surface of material has become a major challenge in developing biomedical β titanium alloy. In the study, TiO2/Ti-35Nb-2Ta-3Zr anti-corrosion micro/nano-composites with different amount of TiO2 particles were successfully fabricated by one-pass friction stir processing (FSP). The composition, microstructure and electrochemical properties of the material are characterized systematically. In particular, compact passive oxide films formed on surface of the material after electrochemical corrosion are elaborated from constituent, thickness and structural characteristics. Furthermore, the relationship between various FSP parameters, microstructure presented and corresponding corrosion resistance has been discussed in detail. The results show that TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composite layers possess massive uniform β grains with homogeneous dispersive oxygen on the surface. Nanocrystallines surrounded by amorphous phases and α″ martensite accompanied with dislocations are discovered. TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composite layers present outstanding corrosion resistance. More TiO2 added and higher rotation speed promotes the optimization in corrosion resistance forming more compact passive films. The study displays the potential of a new micro/nano-composite with outstanding surface microstructure and corrosion resistance that serves better as a biomedical implant. Keywords: Friction stir processing, Titanium alloys, Micro/nano-composites, Surface modification, Corrosion resistance