PLoS ONE (Jan 2018)
Fine mapping of the male-sterile genes (MS1, MS2, MS3, and MS4) and development of SNP markers for marker-assisted selection in Japanese cedar (Cryptomeria japonica D. Don).
Abstract
Pollinosis caused by Japanese cedar (Cryptomeria japonica) is a widespread social problem in Japan. To date, 23 male-sterile C. japonica trees have been selected in Japan to address pollinosis, from which four male-sterility loci (MS1, MS2, MS3, and MS4) have been identified from test crossing results. For efficient breeding of male-sterile C. japonica trees, more male-sterile individuals and individuals heterozygous for male-sterile genes are required. Therefore, we aimed to develop DNA markers for marker-assisted selection of four types of male-sterile genes from populations without a family structure. First, for four families exhibiting segregation of each male-sterile locus (MS1, MS2, MS3, and MS4), genome-wide single-nucleotide polymorphism and insertion/deletion (indel) genotyping was performed using the Axiom myDesign Targeted Genotyping Array method. Four high-density linkage maps for mapping the MS1, MS2, MS3, and MS4 families were constructed, which included 4923, 1722, 1896, and 2247 markers, respectively. In these maps, 15, 4, 2, and 2 markers were located 0.0, 3.3, 1.1, and 0.0 cM from the MS1, MS2, MS3, and MS4 loci, respectively. Second, for the markers located 0.0 cM from a male-sterile locus (i.e., MS1 and MS4), to clarify the most tightly linked markers, we calculated the prediction rate of male-sterile gene genotypes from marker genotypes for 78 trees. The markers with the highest prediction rates were AX-174127446 (0.95) for MS1 and AX-174121522 (1.00) for MS4. The AX-174121522 marker was considered to be suitable for selecting trees homozygous or heterozygous for the MS4 gene from plus-trees without a pollination test, which requires a large amount of time and effort. The nearest markers to the male-sterile loci found in this study may facilitate the isolation of male-sterile genes in C. japonica via combination with the draft genomic sequence that is currently being collated.