Molecular Cancer (Sep 2019)

LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2

  • Mu Xu,
  • Xueni Xu,
  • Bei Pan,
  • Xiaoxiang Chen,
  • Kang Lin,
  • Kaixuan Zeng,
  • Xiangxiang Liu,
  • Tao Xu,
  • Li Sun,
  • Jian Qin,
  • Bangshun He,
  • Yuqin Pan,
  • Huiling Sun,
  • Shukui Wang

DOI
https://doi.org/10.1186/s12943-019-1063-6
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Emerging studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in colorectal cancer (CRC). Here, we report a lncRNA, SATB2-AS1, which is specifically expressed in colorectal tissue and is significantly reduced in CRC. We systematically elucidated its functions and possible molecular mechanisms in CRC. Methods LncRNA expression in CRC was analyzed by RNA-sequencing and RNA microarrays. The expression level of SATB2-AS1 in tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). The functional role of SATB2-AS1 in CRC was investigated by a series of in vivo and in vitro assays. RNA pull-down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), chromatin isolation by RNA purification (ChIRP), Bisulfite Sequencing PCR (BSP) and bioinformatics analysis were utilized to explore the potential mechanisms of SATB2-AS1. Results SATB2-AS1 is specifically expressed in colorectal tissues and downregulated in CRC. Survival analysis indicates that decreased SATB2-AS1 expression is associated with poor survival. Functional experiments and bioinformatics analysis revealed that SATB2-AS1 inhibits CRC cell metastasis and regulates TH1-type chemokines expression and immune cell density in CRC. Mechanistically, SATB2-AS1 directly binds to WDR5 and GADD45A, cis-activating SATB2 (Special AT-rich binding protein 2) transcription via mediating histone H3 lysine 4 tri-methylation (H3K4me3) deposition and DNA demethylation of the promoter region of SATB2. Conclusions This study reveals the functions of SATB2-AS1 in CRC tumorigenesis and progression, suggesting new biomarkers and therapeutic targets in CRC.

Keywords