Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences
Petr Ryapolov,
Anastasia Vasilyeva,
Dariya Kalyuzhnaya,
Alexander Churaev,
Evgeniy Sokolov,
Elena Shel’deshova
Affiliations
Petr Ryapolov
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Anastasia Vasilyeva
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Dariya Kalyuzhnaya
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Alexander Churaev
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Evgeniy Sokolov
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Elena Shel’deshova
Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia
Magnetic fluids were historically the first active nano-dispersion material. Despite over half a century of research, interest in these nano-objects continues to grow every year. This is due to the impressive development of nanotechnology, the synthesis of nanoscale structures, and surface-active systems. The unique combination of fluidity and magnetic response allows magnetic fluids to be used in engineering devices and biomedical applications. In this review, experimental results and fundamental theoretical approaches are systematized to predict the micro- and macroscopic behavior of magnetic fluid systems under different external influences. The article serves as working material for both experienced scientists in the field of magnetic fluids and novice specialists who are just beginning to investigate this topic.