Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles
Wanni Guo,
Mingjian Chen,
Yuxin Yang,
Guili Ge,
Le Tang,
Shuyi He,
Zhaoyang Zeng,
Xiaoling Li,
Guiyuan Li,
Wei Xiong,
Steven Wu
Affiliations
Wanni Guo
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Mingjian Chen
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Yuxin Yang
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Guili Ge
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Le Tang
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Shuyi He
Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
Zhaoyang Zeng
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Xiaoling Li
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Guiyuan Li
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Wei Xiong
NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
Steven Wu
Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
Semiconductiong polymer nanoparticles (Pdots) have a wide range of applications in biomedical fields including biomolecular probes, tumor imaging, and therapy. However, there are few systematic studies on the biological effects and biocompatibility of Pdots in vitro and in vivo. The physicochemical properties of Pdots, such as surface modification, are very important in biomedical applications. Focusing on the central issue of the biological effects of Pdots, we systematically investigated the biological effects and biocompatibility of Pdots with different surface modifications and revealed the interactions between Pdots and organisms at the cellular and animal levels. The surfaces of Pdots were modified with different functional groups, including thiol, carboxyl, and amino groups, named Pdots@SH, Pdots@COOH, and Pdots@NH2, respectively. Extracellular studies showed that the modification of sulfhydryl, carboxyl, and amino groups had no significant effect on the physicochemical properties of Pdots, except that the amino modification affected the stability of Pdots to a certain extent. At the cellular level, Pdots@NH2 reduced cellular uptake capacity and increased cytotoxicity due to their instability in solution. At the in vivo level, the body circulation and metabolic clearance of Pdots@SH and Pdots@COOH were superior to those of Pdots@NH2. The four kinds of Pdots had no obvious effect on the blood indexes of mice and histopathological lesions in the main tissues and organs. This study provides important data for the biological effects and safety assessment of Pdots with different surface modifications, which pave the way for their potential biomedical applications.