International Journal of Aerospace Engineering (Jan 2018)
Gust Perturbation Alleviation Control of Small Unmanned Aerial Vehicle Based on Pressure Sensor
Abstract
A gust perturbation alleviation control method based on a real-time pressure sensor is proposed. Pressure measurement provides phase-advance information on external disturbance, while the conventional inertial measurement cannot. Two pairs of pressure sensors embedded on the main wing surfaces are employed to estimate the disturbance of gust-induced rolling moment. The estimated rolling moment is incorporated into a traditional flight controller as an additional feedforward channel. The simulation results show that the additional information on flow field is helpful and that the composite controller’s architecture is more effective for alleviating gust perturbation than the conventional ones.