Scientific Reports (Aug 2024)

In vitro antiplasmodial and anticancer analyses of endophytic fungal extracts isolated from selected Nigerian medicinal plants

  • David Chinemerem Nwobodo,
  • Nkeoma Nkasi Okoye,
  • Mahasin Sifir Mudkhur,
  • Joseph Chinedu Ikem,
  • Peter Maduabuchi Eze,
  • Festus Basden Chiedu Okoye,
  • Morteza Saki,
  • Charles Okechukwu Esimone

DOI
https://doi.org/10.1038/s41598-024-66456-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Ethnomedicinal plants are thought to have better prospects of harboring endophytes that produce natural products with pharmacological activities. This study aimed to investigate the antiplasmodial and anticancer properties of secondary metabolites of endophytic fungi from three medicinal plants. The endophytic fungi included Lasiodiplodia theobromae isolated from Cola acuminata, Curvularia lunata Bv4 isolated from Bambusa vulgaris, and Curvularia lunata Eg7 isolated from Elaeis guineensis. The identification of the fungi was based on the internal transcribed spacer (ITS-rDNA) sequence. The fungi were subjected to solid-state fermentation and the secondary metabolites were extracted with ethyl acetate. In vitro antiplasmodial screening of extracts was performed using the SYBR green I-based fluorescence assay on the chloroquine-resistant Plasmodium falciparum strain DD2. The cytotoxicity of the extracts on human red blood cells and Jurkat (leukemia) cells was assessed using the tetrazolium-based colorimetric MTT assay. Gas chromatography-mass spectrometry (GC–MS) analysis was used to identify the constituents of the fungal extracts. The extract of L. theobromae showed the best antiplasmodial activity against chloroquine-resistant P. falciparum (IC50 = 5.4 µg/mL) and was not harmful to erythrocytes (CC50 > 100 µg/mL). All three fungal extracts showed a weak cytotoxic effect against Jukart cell lines (CC50 > 100 µg/mL). GC–MS analysis of the three endophytic fungal extracts revealed the presence of forty major bioactive compounds, including: oxalic acid, isobutyl nonyl ester, 2,4-di-tert-butylphenol, and hexadecanoic acid, among others. The endophytic fungi from the medicinal plants in this study were promising sources of bioactive compounds that could be further evaluated as novel drugs for the treatment of malaria caused by P. falciparum-resistant strains.

Keywords