Veterinary Sciences (Jun 2022)

Flow Cytometric Analysis of Leukocyte Populations in the Lung Tissue of Dromedary Camels

  • Jamal Hussen,
  • Turke Shawaf,
  • Naser Abdallah Al Humam,
  • Sameer M. Alhojaily,
  • Mohammed Ali Al-Sukruwah,
  • Faisal Almathen,
  • Francesco Grandoni

DOI
https://doi.org/10.3390/vetsci9060287
Journal volume & issue
Vol. 9, no. 6
p. 287

Abstract

Read online

Respiratory tract infections are among the most common infections in dromedary camels, with a high impact on animal health, production, and welfare. Tissue-specific distribution of immune cells is one of the important factors that influence the nature and outcome of the immune response to pathogens. Several protocols have recently been described for the flow cytometric analysis of immune cells in the lung tissue of several species. However, no such protocol currently exists for dromedary camels. The aim of the present study was, therefore, to establish a flow cytometric protocol for the identification of immune cell populations in the camel lung tissue and the evaluation of some of their phenotypic and functional properties. Combined staining of camel lung leukocytes with monoclonal antibodies to the pan-leukocyte marker CD45 and the myeloid cell marker CD172a allowed the identification of myeloid cells (CD45+CD172a+) and lymphoid cells (CD45+CD172a−) in the lung of healthy camels. The cell adhesion molecules CD11a and CD18 were found in a higher abundance on myeloid cells compared to lymphoid cells. Based on their differential expression of the LPS receptor CD14, macrophages (CD172a+CD14high cells) were identified as the most abundant immune cell population in the camel lung tissue. In contrast to their dominance in camel peripheral blood, granulocytes (CD172a+CD14low) presented only a minor population in the lung tissue. The higher frequency of γδ T cells in the lung tissue than in peripheral blood suggests a role for these cells in the pulmonary immune system. Flow cytometric analysis of bacterial phagocytosis and ROS production upon bacterial stimulation revealed high antimicrobial activity of camel lung phagocytes, which was comparable with the antimicrobial activity of blood granulocytes. Comparative analysis of immune cell distribution between the cranial and caudal lobes of the camel lung revealed a higher frequency of granulocytes and a lower frequency of macrophages in the cranial compared to the caudal lung lobe. In addition, the higher frequency of cells expressing the M2 macrophage marker CD163 in the caudal lung tissue, with a slightly higher fraction of MHCII-positive cells (M1 phenotype) in the cranial lung tissue, may suggest the distribution of different macrophage subtypes in the different lobes of the camel lung. Such differences between lung lobes could influence the effectiveness of the immune response to infection or vaccination with respiratory pathogens. Collectively, the present study identified some similarities and differences between camels and other farm animals regarding the distribution of the main immune cell populations in their lungs. Further studies are required for comprehensive immunophenotyping of the cellular pulmonary immune system in camels.

Keywords