Egyptian Informatics Journal (Mar 2013)

Real parameter optimization by an effective differential evolution algorithm

  • Ali Wagdy Mohamed,
  • Hegazy Zaher Sabry,
  • Tareq Abd-Elaziz

DOI
https://doi.org/10.1016/j.eij.2013.01.001
Journal volume & issue
Vol. 14, no. 1
pp. 37 – 53

Abstract

Read online

This paper introduces an Effective Differential Evolution (EDE) algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA) mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.

Keywords