PLoS Pathogens (Jan 2012)

Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni.

  • Stanley Ching-Cheng Huang,
  • Tori C Freitas,
  • Eyal Amiel,
  • Bart Everts,
  • Erika L Pearce,
  • James B Lok,
  • Edward J Pearce

DOI
https://doi.org/10.1371/journal.ppat.1002996
Journal volume & issue
Vol. 8, no. 10
p. e1002996

Abstract

Read online

Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.