International Journal of Molecular Sciences (Jul 2023)

Distinct Clades of Protein Phosphatase 2A Regulatory B’/B56 Subunits Engage in Different Physiological Processes

  • Behzad Heidari,
  • Dugassa Nemie-Feyissa,
  • Cathrine Lillo

DOI
https://doi.org/10.3390/ijms241512255
Journal volume & issue
Vol. 24, no. 15
p. 12255

Abstract

Read online

Protein phosphatase 2A (PP2A) is a strongly conserved and major protein phosphatase in all eukaryotes. The canonical PP2A complex consists of a catalytic (C), scaffolding (A), and regulatory (B) subunit. Plants have three groups of evolutionary distinct B subunits: B55, B’ (B56), and B’’. Here, the Arabidopsis B’ group is reviewed and compared with other eukaryotes. Members of the B’α/B’β clade are especially important for chromatid cohesion, and dephosphorylation of transcription factors that mediate brassinosteroid (BR) signaling in the nucleus. Other B’ subunits interact with proteins at the cell membrane to dampen BR signaling or harness immune responses. The transition from vegetative to reproductive phase is influenced differentially by distinct B’ subunits; B’α and B’β being of little importance, whereas others (B’γ, B’ζ, B’η, B’θ, B’κ) promote transition to flowering. Interestingly, the latter B’ subunits have three motifs in a conserved manner, i.e., two docking sites for protein phosphatase 1 (PP1), and a POLO consensus phosphorylation site between these motifs. This supports the view that a conserved PP1-PP2A dephosphorelay is important in a variety of signaling contexts throughout eukaryotes. A profound understanding of these regulators may help in designing future crops and understand environmental issues.

Keywords