Energies (Oct 2020)

Heat Generated Using Luminescent Solar Concentrators for Building Energy Applications

  • Quinn Daigle,
  • Paul G. O’Brien

DOI
https://doi.org/10.3390/en13215574
Journal volume & issue
Vol. 13, no. 21
p. 5574

Abstract

Read online

Luminescent solar concentrators (LSCs) are a promising technology for integration and renewable energy generation in buildings because they are inexpensive, lightweight, aesthetically versatile, can concentrate both direct and diffuse light and offer wavelength-selective transparency. LSCs have been extensively investigated for applications involving photovoltaic electricity generation. However, little work has been done to investigate the use of thermal energy generated at the edges of LSCs, despite the potential for harnessing a broad range of solar thermal energy. In this work, Newton’s law of cooling is used to measure the thermal power generated at the edge of LSC modules subjected to solar-simulated radiation. Results show that the dye in single-panel LSC modules can generate 17.9 W/m2 under solar-simulated radiation with an intensity of 23.95 mW/cm2 over the spectral region from 360 to 1000 nm. Assuming a mean daily insolation of 5 kWh/m2, the dye in the single-panel LSC modules can generate ~100 kWh/m2 annually. If the surface area of a building is comparable to its floor space, thermal energy generated from LSCs on the buildings surface could be used to substantially reduce the buildings energy consumption.

Keywords