Systems (Sep 2024)
An Integrated Framework for Estimating Origins and Destinations of Multimodal Multi-Commodity Import and Export Flows Using Multisource Data
Abstract
Estimating origin-destination (OD) demand is integral to urban, regional, and national freight transportation planning and modeling systems. However, in developing countries, existing studies reveal significant inconsistencies between OD estimates for domestic and import/export commodities derived from interregional input-output (IO) tables and those from regional IO tables. These discrepancies create a significant challenge for properly forecasting the freight demand of regional/interregional multimodal transportation networks. To this end, this study proposes a novel integrated framework for estimating regional and international (import/export) OD freight flows for a set of key commodities that dominate long-distance transportation. The framework leverages multisource data and follows a three-step process. First, a spatial economic model, PECAS activity allocation, is developed to estimate freight OD demand within a specific region. Second, the international (import and export) freight OD is estimated from different zones to foreign countries, including major import and export nodes such as international seaports, using a gravity model with the zone-pair friction obtained from a multimodal transportation model. Third, the OD matrices are converted from monetary value to tonnage and assigned to the multimodal transportation super network using the incremental freight assignment method. The model is calibrated using traffic counts of the highways, railways, and port throughput data. The proposed framework is tested through a case study of the Province of Jiangxi, which is crucial for forecasting freight demand before the planning, design, and operation of the Ganyue Canal. The predictive analytics of the proposed framework demonstrated high validity, where the goodness-of-fit (R2) between the observed and estimated freight flows on specific links for each of the three transport modes was higher than 0.9. This indirectly confirms the efficacy of the model in predicting freight OD demands. The proposed framework is adaptable to other regions and aids practitioners in providing a comprehensive tool for informed decision-making in freight demand modeling.
Keywords