eLife (Feb 2016)

Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells

  • Jihoon Shin,
  • Tae Wan Kim,
  • Hyunsoo Kim,
  • Hye Ji Kim,
  • Min Young Suh,
  • Sangho Lee,
  • Han-Teo Lee,
  • Sojung Kwak,
  • Sang-Eun Lee,
  • Jong-Hyuk Lee,
  • Hyonchol Jang,
  • Eun-Jung Cho,
  • Hong-Duk Youn

DOI
https://doi.org/10.7554/eLife.10877
Journal volume & issue
Vol. 5

Abstract

Read online

Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.

Keywords