Biochemistry and Biophysics Reports (Jul 2023)
Low level TGF-β1-treated Umbilical mesenchymal stem cells attenuates microgliosis and neuropathic pain in chronic constriction injury by exosomes/lncRNA UCA1/miR-96-5p/FOXO3a
Abstract
Neuropathic pain is a chronic pain state that usually caused by injuries in peripheral or central nerve. Inhibition of spinal microglial response is a promising treatment of neuropathic pain caused by peripheral nerve injury. In recent years, mesenchymal stem cells (MSCs) that characterized with multipotent ability have been widely studied for disease treatment. TGF-β1 is a well-known regulatory cytokine that participate in the response to cell stress and is closely correlated with the function of nerve system as well as MSC differentiation. This work aimed to determine the effects of exosomes that extracted from TGF-β1-induced umbilical mesenchymal stem cells (hUCSMCs) on the neuropathic pain. In this work, we established a rat model of chronic constriction injury (CCI) of the sciatic nerve and LPS-induced microglia cell model. The hUCSMCs cell surface biomarker was identified by flow cytometry. Exosomes that extracted from TGF-β1-treated hUCSMCs were characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) and used for treatment. We observed that TGF-β1 upregulates the level of lncRNA UCA1 (UCA1) in hUCMSC-derived exosomes. Treatment with exosomal lncRNA UCA1 (UCA1) alleviated the neuropathic pain, microgliosis, and production of inflammatory mediator both in vivo and in vitro. UCA1 directly interact with the miR-96-5p, and the miR-96-5p acts as sponge of FOXO3a. Knockdown of UCA1 upregulated the level of miR-96-5p and downregulated the FOXO3a expression, which could be recovered by inhibition of miR-96-5p. In summary, the TGF-β1-stimulated exosomal UCA1 from hUCMSCs alleviates the neuropathic pain and microgliosis. These findings may provide novel evidence for treatment of neuropathic pain caused by chronic constriction injury.