Machines (Sep 2024)
Investigation on the Dynamic Characteristics of a New High-Pressure Water Hydraulic Flow Control Valve
Abstract
Water has the disadvantages of low viscosity, poor lubrication, and easy leakage, which leads to many problems in water hydraulic flow control valves, such as low working pressure and large flow fluctuations. To address these issues, this paper proposes a novel digital flow control valve. The valve uses a linear stepper motor as the driving device. Compared to proportional electromagnets, the thrust and stroke of the linear stepper motor are larger, making the valve more suitable for high-pressure working conditions. Simultaneously, the valve innovatively incorporates a set of pilot valve spool strings at the front end of the pilot valve damping hole. Through controlling the two pilot valves to regulate the pressure difference before and after the damping hole, the flow passing through the pilot valve is maintained stable, thereby making the pressure of the upper chamber of the master valve spool more stable. In comparison to a single pilot valve structure, this design ensures a more stable main valve core position and reduces flow fluctuation. A mathematical and simulation model of the valve has been established, confirming the performance advantages of the new structure. The impact of structural parameters (such as valve core diameter, spring stiffness, and diameter of damping hole) on the stability of flow regulation has been investigated. A genetic algorithm has been employed to optimize the key parameters that influence valve flow stability, resulting in the identification of optimal parameters. The simulation results indicate that the optimized parameters lead to a reduction of approximately 45% in the maximum overshoot oscillation amplitude of the valve flow regulation. A prototype of the new flow control valve was developed, and a test system was established for conducting tests. The test results also confirmed the performance advantages of the valve and the accuracy of the optimal design.
Keywords