Acetylcholine regulates the melanogenesis of retinal pigment epithelia cells via a cAMP-dependent pathway: A non-neuronal function of cholinergic system in retina
Ivan Kong,
Gary Ka-Wing Yuen,
Qi-Yun Wu,
Maggie Sui-Sui Guo,
Jin Gao,
Tina Ting-Xia Dong,
Karl Wah-Keung Tsim
Affiliations
Ivan Kong
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
Gary Ka-Wing Yuen
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
Qi-Yun Wu
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
Maggie Sui-Sui Guo
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
Jin Gao
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
Tina Ting-Xia Dong
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
Karl Wah-Keung Tsim
Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; Corresponding author. Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.
The turnover rate of melanogenesis in retinal pigment epithelium (RPE) and its molecular signaling remain unclear. This study aimed to investigate the role of cholinergic signaling in the process of melanogenesis of cultured RPE cells. Here, a human retinal pigment epithelia cell line, ARPE-19 cell, was used to study the process of melanogenesis. The mRNA and protein expressions of cholinergic molecules, e.g., acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and melanogenic molecules i.e., tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), and melanin pigment were measured during melanogenesis of cultured ARPE-19 cells. Forskolin (a cAMP inducing agent), acetylcholine (ACh) and bethanechol (Bch; a muscarinic AChR agonist) were used to induce melanogenesis in the cultures. Muscarinic acetylcholine receptor (mAChR) antagonists were employed to identify the receptor subtype. During melanogenesis of ARPE-19 cells, the mRNA and protein expressions of cholinergic molecules, e.g., AChE and BChE, were increased along with melanogenic molecules, i.e., TYR, MITF and melanin pigment. Forskolin, ACh, and Bch induced an upregulation of melanogenesis in cultured ARPE-19 cultures: the induction was parallel to an increase of AChE expression. The Bch-induced enzymatic activities and mRNA levels of AChE and TYR were fully blocked by the treatments of gallamine (a M2 specific antagonist), tropicamide (a M4 specific antagonist) and atropine (non-specific antagonist for mAChRs). Cholinergic signaling via M2/M4 mAChRs regulates melanogenesis in cultured ARPE-19 cells through a cAMP-dependent pathway. This study provides insights into the regulation of RPE cell melanogenesis via a non-neuronal function of cholinergic system.