Entropy (Jul 2024)

An Active Inference Agent for Modeling Human Translation Processes

  • Michael Carl

DOI
https://doi.org/10.3390/e26080616
Journal volume & issue
Vol. 26, no. 8
p. 616

Abstract

Read online

This paper develops an outline for a hierarchically embedded architecture of an artificial agent that models human translation processes based on principles of active inference (AIF) and predictive processing (PP). AIF and PP posit that the mind constructs a model of the environment which guides behavior by continually generating and integrating predictions and sensory input. The proposed model of the translation agent consists of three processing strata: a sensorimotor layer, a cognitive layer, and a phenomenal layer. Each layer consists of a network of states and transitions that interact on different time scales. Following the AIF framework, states are conditioned on observations which may originate from the environment and/or the embedded processing layer, while transitions between states are conditioned on actions that implement plans to optimize goal-oriented behavior. The AIF agent aims at simulating the variation in translational behavior under various conditions and to facilitate investigating the underlying mental mechanisms. It provides a novel framework for generating and testing new hypotheses of the translating mind.

Keywords