Journal of Marine Science and Engineering (Jun 2024)
Remote-Sensing Estimation of Upwelling-Frequent Areas in the Adjacent Waters of Zhoushan (China)
Abstract
Upwelling, which mixes deep and surface waters, significantly enhances the productivity of surface waters and plays a critical role in marine ecosystems, especially in key fishing areas like Zhoushan. This study utilized merged sea surface temperature data and an upwelling edge detection algorithm based on temperature gradients to analyze the characteristics of upwelling in Zhoushan and the Yangtze River Estuary over the past 28 years. The results indicate that upwelling in Zhoushan begins in April, peaks in July, gradually weakens, and disappears by October. The phenomenon is most pronounced during the summer months (June to August), with significant spatial distribution differences in April and September. Notably, high probability values of upwelling centers and core areas are mainly concentrated near Ma’an Island, Zhongjieshan Island, and Taohua Island. In these areas, upwelling remains stable during the summer, forming a unique “footprint” distribution pattern, and these are also the locations of the Zhoushan National Marine Ranch. From April to August, the extent of the upwelling area gradually decreases and stabilizes. These findings emphasize the frequent upwelling activity around Zhoushan and its significant contribution to the formation of local fisheries. Additionally, considering that the formation of natural upwelling in the East China Sea depends on the southern monsoon, the study suggests establishing artificial upwelling systems during periods unfavorable for natural upwelling, based on high probability areas, to enhance fishery yields and support the development of local fisheries.
Keywords